
1

 Wack Chat
A project report submitted in fulfillment of Computer Security Course

Submitted by
 Subhash Chandra, Teddy Diallo, Joshua Wiseman, Jamshed Karimnazarov

 Under Supervision of

 Prof. Dr Shanguing Zhao

School of Computer Science
University of Oklahoma, Norman, OK

May, 2024

2

Project Description

Wack Chat is a secure instant messaging platform designed to facilitate confidential point-to-point

communication. The application features a dynamic front-end interface developed with React.js and

integrated with a Firebase backend. The platform has the following key features:

●​ Account Management: Users can effortlessly register and log in to manage their profiles and

maintain session integrity.

●​ Contact Search and Messaging: The system allows users to search for other registered individuals

and engage in private messaging.

●​ Robust Security: Using protocols and algorithms discussed in our coursework, Wack Chat ensures

that all communications are encrypted and secure.

This project serves as a practical application of our theoretical knowledge with the implementation of

security measures, including encryption techniques and key management protocols.

GitHub Repository: https://github.com/XixWISExiX/WackChat

How to Access the Project

Wack Chat is hosted on GitHub, allowing users to easily download and set up the platform. To begin,

clone the project repository from GitHub and execute “npm start” from the command line to launch the

application (Note: you will not be able to access the application currently if you don’t have the .env.local

file with the database information, this will be solved when application is deployed).

1.​ Initial Login Screen: Upon launching Wack Chat, you will be greeted by a login screen. Here, you

can enter your email and password. The system checks these credentials against those stored in

the database. If they match, you will gain access to the platform.

1.​ Account Creation: If you do not have an existing account, click the 'Sign Up' button to register.

Follow the prompts to set up your new account, which will then be verified and stored securely in

our database.

2.​ Messaging and Searching for Users: Once logged in, you can begin communicating by clicking

the 'Message Person' button. This opens a search bar where you can look for other users. As you

type, the system will suggest users from the database, allowing you to quickly find and select the

person you wish to message.

https://github.com/XixWISExiX/WackChat

3

The user interface is designed to be intuitive, facilitating smooth navigation and interaction within the

application.

4

Key Management Protocols

Upon registration, each user is assigned a unique pair of cryptographic keys: a public key and a

private key to communicate via RSA. These keys are essential for ensuring secure communication. The

public key is available to other users to facilitate encrypted communications and is stored in the database,

while the private key remains confidential and stored securely in local storage.

During a communication session, when a user searches for and selects another user to message, a session

key is generated if one is not already generated.

This session key plays a critical role in securing the communication session between the two

parties. It is encrypted using the Advanced Encryption Standard (AES) algorithm, ensuring that only the

intended recipients can decrypt it. The AES keys exchanged are encrypted with the user’s public key and

stored in their own user profile (stored in two locations in the database). Also, we are using AES (256 bit

version) here because it is not possible to break in a reasonable amount of time in our day and age, hence

using this over something like DES (56 bits). The encrypted session key is then securely stored in the

database and is used for encrypting and decrypting messages during that session. The session key is

specific to communication sessions between each two users.

Message Handling Protocols

Once you send a request to the user, for both users the AES key gets decrypted and stored in local Storage

(screenshot below) in the browser so you can use that for message encryption and decryption.

5

Users can then start interacting with each

other as can be seen on the screenshot on

the left. Each message gets encrypted with

the AES key and is stored in the database.

Once the message is added to the

databases, the receiving user receives it

and decrypts it with the AES key stored in

the local storage. Both the encrypted and

decrypted messages are shown on the user

interface.

The image on the right shows how the messages

are stored in the database. As you can see, only the

encrypted messages are stored hence the system

being end-to-end encrypted.

Encryption Technique (Extra Credit 2: "Pre shared passwords not needed")

How this is done on a technical level is that there is a function that checks whether a session key

is generated. If there is a session key generated, it is located in the AES column of the database, and is

represented in a hash map. The key is the receiver ID, and the value is the encrypted AES key (encrypted

with the sender’s public key). In the case where the key is not generated, another function is called to

handle the session key process. The sender will go ahead and generate an AES key themselves, then

encrypt it with the receiver public key and add the key:value pair as listed before to the database. Along

with this, the connection must be established from the other end, meaning that now the receiver must have

the key be the sender ID, and the value be the receiver’s public key encrypted AES key. After this

database update is done, the session key can be pulled from the database by both users. There is then a

6

call to another function to decrypt the AES session key with the user’s private key to finally obtain the

session key to use for messaging. Currently, this session key generation is done ONCE and never done

again for ease of implementation.

The message encryption is built upon the session key generation and after the session key

generation is complete, both users are now able to message each other. When a message is typed out and

the user submits the message, it will call a function which takes the message and encrypts it with the AES

session key. After which this encrypted message is sent to and stored in the database, under a chat table.

When that chat table is updated, it pings the receiver of the message (therefore updating their chat logs

with the new messages). After which, when the receiver next logs in, the application will grab the new

database information and decrypt it with the AES session key, allowing for the receiver to look at the new

messages sent.

Security Improvement Strategies (Extra Credit 1: "Improve the Encryption Algorithm")

-​ Generate a new session key that already exists between two users when both users log off the

application. Constant regeneration of the session key will lead to potential resets in the attacker's

brute force approach (testing all combinations) making it more computationally difficult to crack.

-​ The server itself could have a public and private key, acting like the CA. With this, you can send

the newly made user your public key, have them verify you, and then have them generate a public

and private key. Of which, the public key being sent to the database will be encrypted with the

database's public key. Account generation doesn’t happen as much as message generation, but

could have still been prone to man-in-the-middle attacks, with this solution, that

man-in-the-middle attack no longer exists.

-​ Having the website be hosted on HTTPS will also improve security, because it doesn’t just rely

on the custom encryption algorithms we have made. With our approach, we believe it to be

secure, however, there could be bugs we don’t see, and having something like HTTPS to help

further encrypt messages will only make the application more secure than previously.

Conclusion

Q: With a key no less than 56 bits, what cipher you should use?

A: AES (128+ bits)

Q: DO NOT directly use the password as the key, how can you generate the same key

between Alice and Bob to encrypt messages?

A: Digital Envelope using the previously generated public and private keys.

Q: What will be used for padding?

7

A: Random number generator which is like 16 bits long.

Q: A graphical user interface (GUI) is strongly preferred. When send a message, display

the sent ciphertext. When receive a message, display the received ciphertext and

decrypted plaintext.

A: Ok

Q: How should Alice and Bob set up an initial connection and also maintain the connection

with each other on the Internet? (You may refer to socket/network programming in a

particular computer language)

A: Connecting Firebase Values (Bob to Alice and Alice to Bob) along with update listeners to the

messaging table, so GUI updates with recently sent messages.

Q: If Alice or Bob sends the same message multiple times (e.g., they may say “ok” many

times), it is desirable to generate different ciphertext each time. How to implement this?

A: As previously mentioned, appending a random 16-bit number would help this, and you wouldn’t need

to generate a random session key every time (generating a new session key every few hours or something

like that would also work in addition to the previous).

Q: Design a key management mechanism to periodically update the key used between

Alice and Bob. Justify why the design can enhance security.

A: Every hour, a new key will be generated. This would enhance security because the attacker can only

crack an AES key in a certain amount of time, and the regeneration of the session key will reset that timer.

Leading to an attacker's chance of cracking the session key to be extremely low.

Q: Have a good plan to show your design in the report (e.g., you may take the screenshot

of your functions and the results, and then explain how your functions achieves the

results.)

A: Answered in the previous parts.

